Department of Physiology of industrial microorganisms

fade

The department of physiology of industrial microorganisms was created in 1929. Initially scientists of the department studied microorganisms important to dairy, sugar and food preservation industries, also research in the field of bacteriophages and anaerobiosis had been conducted. Doctor of agricultural sciences M.L. Nepomnyasha was the head of the department till 1952. From 1952 to 1959 doctor of biological sciences G.M. Frenkel was the head of the department. The corresponding member of National Academy of Sciences (NAS) of Ukraine professor E.I. Kwasnikov headed the department from 1960 to 1988. His works concerning lactic acid bacteria, yeasts, nocardia and corynebacteria are of great practical and theoretical interest. Depositary Authority of microorganisms is operated in the Department.

In recent years the staff of the department of physiology of industrial microorganisms headed by academician of NAS of Ukraine doctor of biological sciences professor V.S. Pidgorsky include corresponding member of NAS of Ukraine doctor of biological sciences professor N.K. Kovalenko, doctor of biological sciences E.N. Gromozova, E.O.Kovalenko, PhD T.V. Babich, S.I. Voychuk, I.L. Garmasheva, T.M. Golovach, T.U. Dumanska, L.B. Zelena, A.G. Kisten, O.G. Mameeva, T.M. Nogina, O.A. Poltavska, O.V. Sachuk, G.F. Smirnova, L.A. Homenko, O.D. Ianieva, Е.P. Livinska, М.А. Fomina.

For the first time environmental approaches in the taxonomy of lactic acid bacteria with the use of taxonomy and molecular identification methods have been proposed. The influence of the environment on the physiological and biochemical properties of lactobacilli, enterococci, lactococci and bifidobacteria has been detected.

Universal primers to their genomic DNA have been developed. The heterogeneity of the 16S rRNA gene of some species of lactic acid bacteria and bifidobacteria was confirmed. PCR-based express-system for the rapid identification of industrially important strains was designed. A lactobacillus strain - producer of specific bacteriocin-like substance encoded by chromosomal genes has been revealed. On the base of PCR-analysis with primers, specific to the three most common genes, enterocins A, B and P and their expression in probiotic strains of enterococci have been found. PCR screening of a collection of bifidobacteria revealed in some strains the presence and expression of the gene β-fructofuranosidase allowing the use of FOS as the unique source of carbohydrates.

Teichoic acids obtained from whole cells of industrially important strains of lactobacilli have been obtained using a modified method of extraction. The composition of teichoic acids and the structural differences between the studied polymers have been established by methods of infrared spectroscopy and nuclear magnetic resonance.

The adhesive activity of lactic acid bacteria and bifidobacteria to buccal and vaginal epithelial cells of humans has been studied. It was shown that treatment of buccal epithelium with teichoic acids of lactobacilli reduces adhesion of these microorganisms. Dose-dependent stimulatory effect of teichoic acids of probiotic strains of lactobacilli on the immune system of laboratory animals was established. Such adhesive activity of lactic acid bacteria and bifidobacteria was not depend on the degree of hydrophobicity of the cell surface of bacteria and their autoaggregation.

The collection of strains of lactic acid bacteria and bifidobacteria isolated from different econiches (digestive tract of people of different age groups (children, adults, long-lived persons), women with osteoporosis) was created. The collection includes species inhabited the organism of cold-blooded and warm-blooded animals (mammals, birds, fish, dolphins, bees), and isolated from the epiphytic microflora and traditional dairy products. Probiotic strains for functional food have been selected.

On the basis of ecological and taxonomic studies of hydrocarbon oxidizing actinobacteria it have been selected the most active strains – destructors of oil and oil products belonging to the species of Dietzia maris, Gordonia rubripertincta and of Rhodococcus erythropolis. The feature of these actinobacteria is their ability to degradation of hydrocarbons in microaerobic conditions, a wide range of pH, temperature and salinity of the medium. First it has been established that they utilize the most heavily oxidized oil fraction - petroleum oils and various brands of mineral motor oils, which are the most environmentally hazardous petroleum products. It has been shown that the sensitivity of actinobacteria to high concentrations of motor oils correlates with the presence and quantity in them of zinc dithiophosphate – the base toxic component of these lubricants. Among the heavy metals that are included in the motor oil, the most toxic to the strains were ions of copper, aluminum and zinc. It has been established that the basic mechanisms of actinobacteria adaptation to hydrocarbons assimilation are significant increase of the cell wall hydrophobicity and the synthesis of biogenic surfactants that exhibit emulsifying properties and form stable emulsion of the type "oil in water". It has been found that in the composition of these surfactants monomycolates and dimycolates of trehalose dominate, which are the major glycolipid components of the cell walls of the studied microorganisms. On the basis of the most active hydrocarbon oxidizing actinobacteria strains, immobilized on oil absorbing sorbents, the highly effective ecologically biopreparates "Rodoil" and "Ekolan-M" for environmental clean-up from oil and oil products were created.

Based on initial screening of actinobacteria strains capable to biotransformation of medicinal medicinal drugs, containing phenolic hydroxyl (acetaminophen), active strains - destructors of these substances were selected. The ways of biotransformation of acetaminophen by actinobacteria, intermediate and final products of its biodegradation were determined. A method for identification and quantitative determination of acetaminophen and its biotransformation products was carried out and were optimized conditions for effective separation of these compounds by thin-layer chromatography. Environmental safety of the final products of biodestruction of acetaminophen by actinobacteria, indicating their perspective using in ecologically safe biotechnologies of utilization unfit for consumption of medicinal drugs containing hydroxyl phenol were established.

Copper and cadmium resistance of A03 and С25а Pseudomonas aeruginosa strains was shown to be inducible while that of A17 strain was constitutive. Copper and cadmium resistance of P. aeruginosa C25a strain have been probably determined by plasmid. Up to 65% cadmium was accumulated on the cell surface of P. aeruginosa strains and more than 90% copper was found to be adsorbed on the cell surface of P. aeruginosa А03 and С25а. ATP-dependent efflux systems have been involved in copper and cadmium resistance of P. aeruginosa strains.

Comprehensive studies of lectins produced by saprotrophic microorganisms, specifically extracellular lectins of bacterial genus Bacillus, revealed physiological peculiarities of growth and lectins formation by microbial producers and implement directed synthesis of these substances. As a result, the technology for obtaining of preparations of lectins and their isoforms was developed. We established carbohydrate-binding, hemagglutinating, physico-chemical and medical-biological properties of these biopolymers. One of the most basic characteristics of these lectins is their affinity to sialic acids. They are able to recognize not only quantity of sialic acids, their types, forms and chemical bonds, but also certain oligosaccharide structures on the cell surface. There are various mechanisms of action of sialic acid specific lectins of Bacillus species. Direct mechanism of action of given lectins is based on the blocking of the surface sialic acid-containing surface receptors on bacteria and viruses. Indirect mechanism of their action is mediated by receptors of cell membranes and leads to the activation of natural defense functions of the organism. Different isoforms of bacillus lectins manifest regulatory effects at the intracellular level where they could target the processes of reparation, replication and transcription. Such complex mechanism of the action of bacillus lectins provides the basis for wide spectrum of their biological activity. They are inductors of alpha- and beta-interferons, and manifest strong immuno-modulating, antitumor and antiviral properties. The lectins completely block the surface sialic acid-containing receptors of flu, herpes, hepatitis C and AIDS viruses. These receptors play a key role in the recognision of target cells by viruses and in the infection initiation. Thus the lectins prevent the further viral adsorption and reproduction, and the genesis of the desease.

We suggest the possible areas of bacillus lectins application as valuable chemical-analytical and diagnostic reagents, therapeutic and preventive preparations. The technology of production of gamma-interferons for prophylaxis and treatment in animal husbandry using certain bacterial lectin as an interferon inductor was suggested. Complex preparations of bacterial lectins with heterocyclic bis-adducts were constructed as original antitumor drugs. On the basis of the B. subtilis IMV V-7014 lectin, we developed the preparation “LECTIVIR” for prevention and therapy of infections caused by viruses of herpes 1 and 2. The substance of bacterial lectin and preparation “LECTIVIR” was registered by Ukrainian Ministry of Health.

Found that bacteria that neutralize inorganic xenobiotics (oxygen anions - chromate, chlorate, sulfate, perchlorate, vanadate, heavy metals) - are widespread in natural and man-made substrates, regardless of the level of contamination. Active strains of chromate-, chlorate- and perchlorate-reducers were selected. The most active of these were belong to the species Aerococcus dechloraticans, Acinetobacter thermotoleranticans, Aeromonas dechromaticus, Pseudomonas putida. Study of the physiology of these microorganisms in batch and continuous conditions will allow to optimize the growth conditions and the maximum decomposition of xenobiotics. Proved that most of the strains except the acceptor on which they were isolated, reduced and alternative acceptors. It was studied the features of the growth of active strains on inorganic oxyanions at the individual or joint finding them in the environment and influence of them on a chlorate-reducing activity. Proved that microbial decomposition of chlorate depends on the presence of heavy metals in the environment which may exert negative influence on chlorate-reducing (hexavalent chromium, zinc, nickel, cobalt, and copper when cultured under acidic conditions), slowing the reduction of chlorate or stimulate it as iron compounds of different valence.

It was found that chlorate-reducing bacteria can cause corrosion of iron, equal in intensity of corrosion provoked by sulfate-reducing bacteria, and in some cases, much higher than it. The process of biological cleaning of industrial waste waters from chlorate and chromate with the use chlorate-reducing and cellulose-degrading bacteria immobilized on the plant raw material was optimized. . Immobilisation on different organic and inorganic materials promote of the bacteria culture for much longer retain their activity.

Identified strains-producers of natural flavouring 2-phenylethanol by yeast of the genera Saccharomyces and Kluyveromyces. A maximum level of production of 2-feniletanola in yeast, studied the relationship between stress tolerance to ethanol and 2- phenylethanol and fatty acid composition of yeast. Found active strains - sorbents heavy metal ions Cu2+, Pb2+ and Cr6+, related to Rhodotorula mucilaginosa, R. aurantiaca, Williopsis californica, Candida krusei, Saccharomyces cerevisiae, Cryptococcus sp. It was found that these strains are resistant to high concentrations of heavy metals (up to 500 mg / L) in the solution.

Studying of the action of the non-ionizing electromagnetic radiation on the yeasts Saccharomyces cerevisiae and Shizosaccharomyces pombe, both are the model organisms for eukaryotic organisms study, showed changes at population, cellular, molecular and genetic level. Irradiated cells possessed nonspecific resistance to variety of physical and chemical stresses. Anthropogenic non-ionizing electromagnetic radiation assumed as the factor of an antibiotic resistance phenomenon. An experimental model of biosensor device for assessment of biological effects of non-ionizing electromagnetic radiation was developed in collaboration with scientists from the Usikov Institute for Radiophysics and Electronics of the National Academy of Sciences of Ukraine.

Two active strains producing glycolipid biosurfactants have been selected from 160 yeast strains isolated from various flowering plants and bees Apis mellifera. They were identified as Candida gropengiesseri and Candida bombicola. These yeast strains produced up to 16 g/l glycolipids thus decreasing the medium surface tension to 36.6-32.3 mN/m. Thus, the foundations managed effective cultivation of mycelia fungy in fermenters and provides recommendations for biotechnological processes.

In accordance with the regulating documents Depositary receives and is guaranteed to retain the innovative and productive microorganisms that are used in Ukraine. Optimized method for the storage of strains of different taxonomic groups in genetically stable condition using the lyophilization and cryopreservation, shows the state of preservation of productive properties of deposits under these storage conditions, identified specific stressful effects of freezing and sublimation on variability of cultures.

  1. Омельянець Т.Г., Головач Т.М. Токсикологічна оцінка біопрепаратів на основі азотфіксуючих бактерій // Мікроб. журн., 2009, 71, 6, с. 21-27.
  2. Підгорський В.С., Вельчинська О.В., Коваленко Е.О., Шарикіна Н.І. Шляхи створення нових антиметаболітів піримідинового обміну – біс-похідних 5(6)-заміщених урацилів та їх молекулярних комплексів з бактерійними лектинами // Доповіді НАНУ. – 2009. – № 4. – С.168-173.
  3. Підгорський В.С., Коваленко Е.О., Карпова І.С., Сащук О.В., Корецька Н.В., Гетьман К.І. Вплив генотипу мутантів Bacillus subtilis на синтез лектинів з використанням різних джерел вуглецю // Доповіді НАНУ. – 2009. – № 3. – С.176-181.
  4. Полтавська О.А., Коваленко Н.К. Таксономічне положення біфідобактерій і сучасні методи їх ідентифікації // Мікробіол. журн. – 2009. - Т.71, №3. – С.62-72.
  5. Смирнова Г.Ф. Влияние состава сточных вод на скорость их обезвреживания культурой Acinetobacter thermotoleranticus C-1 // Химия и технология вводы , 2009. т. 31, №4. с. 462-468
  6. Смирнова Г.Ф., Підгорський В.С., Антонова І.С.Мікробне відновлення окксианіонів хлору з використанням рослинноі сировини // Мікробіол. Журн. 2009, т.71, №2 с.69-73
  7. Смирнова Г.Ф. Оптимизация условий биологической очистки сточных вод от хлоратов и хроматов с использованием растительных отходов. - Химия и технология вводы , 2009.т. 31,№4. с. 462-468
  8. Mameeva O.G. and Podgorsky V.S. Cr (VI) ion uptake by yeast S. cerevisiae UCM Y-1968 and its protoplasts // Advanced Materials Research. – 2009. – Vols. 71-73. – P. 593-596
  9. Voychuk S.I., Gromozova E.N., Sadovskiy M.G. The model of fungal population dynamics affected by nystatin // Int J Quant Chem. – 2010. – Vol. 110, Issue 1. – P: 242-251.
  10. Громозова Е.Н., Войчук С.И., Качур T.Л, Горчев В.Ф., Карахим С.A. Особенности строения волютиновых гранул в клетках низших полифосфат-аккумулирующих эукариот// Ж-л Біотехнологія” –2010. -Т.3, №4.- С.55-62.
  11. Губський Ю.І., Вельчинська О.В., Шарикіна Н.І., Коваленко Е.О., Підгорський В.С. Оригінальні антиметаболіти пуринового обміну – похідні імідазолу та бензімідазолу, їх молекулярні комплекси з бактерійними лектинами // Доповіді НАНУ. – 2010. – № 5. – С.187-192
  12. Гармашева И.Л., Коваленко Н.К. Методы идентификации и таксономия энтерококков // Мікробіол. журн.- 2010.- Т. 72, № 5.- C. 49-58
  13. Ногіна Т.М., Хоменко Л.А., Підгорський В.С. Деструкція моторних олив актинобактеріями// Микробиол. журн. - 2010 – Т.72, №4. – С.16-22.
  14. Підгорський В.С., Коваленко Е.О., Карпова І.С., Сащук О.В., Гетьман К.І. Cтруктурна характеристика позаклітинного лектину сапрофітної культури Bacillus subtilis ІМВ В-7014 // Доповіді НАНУ. – 2010. – № 9. – С.143-149.
  15. Підгорський В.С.,Коваленко О.Г,Васильєв В.М.,Ісакова О.В. Використання кормових та пекарських дріжджів для отримання біологічно активних гліканів \\Біотехнологія, Т.3, №6, 2010. –С.49-57
  16. Смирнова Г.Ф., Гавриленко М.Н., Підгорський В.С. Вивчення процесу відновлення хлоратів у безперервному режимі // Мікробіол. журн. - 2010. - Т.72, №1 – С.34-39
  17. Ianieva O.D., G.F.Smirnova,V.S. Pidgorsky. Accumulation and efflux of copper and cadmium ions by Pseudomonas aeruginosa strains// Мікробіологія і біотехнологія. – 2010. - № 2. – С. 22-29.
  18. Mameeva O.G., Ostapchuk A.M., Podgorsky V.S. The 2-phenylethanol and ethanol production by yeast Saccharomyces cerevisiae // Мікробіологія і біотехнологія. – 2010.- №1(9). – С. 14-22
  19. Гармашева И.Л., Коваленко Н.К.. Биологическая активность и безопасность энтерококков // Мікробіол. журн.- 2011.- Т. 73, № 4.- с. 77-84.
  20. Ливинская Е. П., Коваленко Н. К., Гармашева И. Л. Дезинтеграция лактобацилл и энтерококков для получения фрагментов клеточных стенок // Микробиол. журн. – 2011. – Т. 73, №3, - С 26-32
  21. Подгорский В.С., Фуртат И. М., Ногина Т. М., Коваленко Э. А., Сащук Е. В., Гетьман Е.И. Свойства лектинов и поверхностных биополимеров клеток непатогенних коринебактерій // Biopolymers and cell. – 2011. – Т.27, № 1. – С.40-46.
  22. Громозова Е.Н., Качур Т.Л., Войчук С.И., Рязанова Л.П., Кулаковская Т.В. Новые аспекты плейотропного действия генов, кодирующих экзополифосфатазы дрожжей Saccharomyces cerevisiae // Мікробіол. журн. – 2012, Т.74, №5. – С.26-31.
  23. Зеленая Л.Б., Коваленко Н.К., Облап Р.В., Новак Н.Б., Голубец Р.А. Использование ПЦР в реальном времени для количественной оценки молочнокислых и бифидобактерий в молочных продуктах // Микробиологический журнал. -2012. – Т.74, №1 – С.14-19.
  24. Лівінська О.П., Гармашева І.Л., Коваленко Н.К. Вплив тейхоєвих кислот пробіотичних лактобацил на мікробну адгезію до епітеліальних клітин. // Мікробіол. журн. – 2012. – Т. 74, №3. – С. 16-22
  25. Лівінська О.П., Гармашева І.Л., Коваленко Н.К. Тейхоєві кислоти молочнокислих бактерій. // Мікробіол. журн. – 2012. – Т.74, №4. – С.87-94
  26. Ногина Т.М., Думанская Т.У., Хоменко Л.А., Подгорский В.С. Эффективность препарата «Эколан-М» для очистки нефтяных загрязнений почвы // Микробиол. журн. – 2012. – 74, №6. – С.24 – 30.
  27. Підгорський В.С., Коваленко Е.О., Карпова І.С., Сащук О.В., Гетьман К.І., Рубан Т.О., Сухорада О.М., Лукаш Л.Л. Вплив ізоформ лектину Bacillus subtilis на життєздатність нормальних та злоякісних клітин in vitro // Мікробіол. журн. – 2012. – Т. 74, № 3. – С. 3-9.
  28. Полтавська О.А., Коваленко Н.К. Антимікробна активність бактеріоциноподібних речовин біфідобактерій // Мікроб. журнал – 2012. – Т.74, №.5– С.
  29. Янева О.Д., Сичкарь С.В., Воронина А.А., Подгорский В.С.. Отбор термофильных штаммов дрожжей, активно сбраживающих лактозу // Мікробіол. журн. – Т.74, №6. – 2012. – С. 53-58
  30. Gromozova E., Voychuk S.I., Vishnevsky V., Ragulskaya M., Grigor'ev P. Cosmic rays as bio-regulator of deep time terrestrial ecosystems // Sun and Geosphere. – 2012. – 7(2). – P:117-120.
  31. Gromozova E.N, Voychuk S.I. Zelena L.B, Gretckey I.A. Microorganisms as a model system for studying the biological effects of electromagnetic non-ionizing radiation // Safety Engineering. – 2012. – 2(2). - P:89-92
  32. Klochko V.V., Zelena L.B., Voychuk S.I., Ostapchuk A.M. Peculiarities of Alteromonas macleodii strains reflects their deep/surface habitation rather than geographical distribution // J. Gen. Appl. Microbiol. – 2012. – 58. - Р:129-135. .(impact factor – 1.0)
  33. Voychuk S.I., Gromozova E.N. Microbial growth fluctuating in response to solar-terrestrial activity variations // Мікробіол. журн. – 2012, Т.74, №3. – С.63-71.
  34. Янева О.Д. Механизмы устойчивости бактерий к ионам тяжелых металлов // Мікробіол. журн. - Т. 71, № 6. – С. 54-65.
Tel: 526-92-16, 526-23-29